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A SIMPLE NUMERICAL TECHNIQUE FOR TRANSIENT 
CREEP FLOWS WITH FREE SURFACES 

MEHDI GOLAFSHANI 
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SUMMARY 
A simple, but powerful iterative technique is presented for the numerical solution of the time-dependent flow 
of an incompressible viscous fluid with or without a free surface. The usual numerical stability restrictions 
related to the viscous acceleration terms are avoided using standard implicit differencing techniques. The 
properties and accuracy of the method are illustrated by several calculational examples. 
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INTRODUCTION 

There exist many fluid flow problems of practical importance in which the viscous forces are 
dominant. Several numerical techniques have been developed for the solution of incompressible 
viscous flow problems.’’ 2 ,9  These methods, however, apply mainly to problems for which the 
inertial forces are larger than the viscous forces, i.e. the Reynolds number is much greater than 
one. Owing to limitations related to numerical stability restrictions, these methods cannot be 
efficiently applied to flow problems for which Re G 1. The method devised by Pracht3 was 
especially suited for the low-Reynolds-number range. However, it is somewhat difficult to 
implement for general-purpose flows including free surfaces and there is no evidence of its 
extensive use in the literature. 

This report describes a technique that has been developed by the author to investigate 
incompressible flow in the low-Reynolds-number range. It has been developed as an extension to 
the SOLA-VOFZ program and, owing to its use of full Navier-Stokes equations, it can be equally 
applied to flow problems in the intermediate-Reynolds-number range. This new technique is 
called the ‘cell iterative adjustment technique’, from hereon termed CIAT. 

In order to see the advantages of the CIAT algorithm, a brief review of the deficiencies of 
previous  technique^'.^*^ is in order. In all of these techniques viscous stresses are modelled in an 
explicit way. In any explicit prediction process of this kind there is a limit to the size of 6t for 
which computed solutions will remain accurate and numerically stable. In fact, for a constant 
kinematic viscosity v,  the time step must be limited to satisfy the inequality 

(1) dt  < 6x2 dy2/2v(dxZ + 6yZ),  

where 6x and 6 y  are the mesh intervals in the x- and y-directions respectively. 
To demonstrate a co‘nsequence of this limit, we can rewrite equation (1) as 

N ,  > 2(N: + Nz)/Re, (2) 
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where N ,  is the number of time steps, each of duration at, which is required to carry the solution 
to a characteristic time T= N,dt  and N ,  and N ,  are the number of mesh cells used to resolve a 
characteristic flow dimension L in the x -  and y-directions respectively ( L  = NX6x and L = N,dy). 
Generally N ,  and N ,  must be of the order of 10 or greater to have adequate resolution. Thus, for 
low Reynolds numbers, the number of time steps, N , ,  needed to calculate a characteristic flow 
time can be quite large. In fact, if one is interested in studying a certain fluid flow at Re =0.01 with 
a minimum numbers of mesh cells in the x- and y-directions (i.e. N,= N , =  lo), equation (2)  
indicates that N ,  > 40000 and therefore to study the flow up to a characteristic time of T= 1 s the 
numerical solution has to be performed with a time step of the order of s. This would be a 
long calculation by most standards, requiring two or three hours of computer run time, and 
would not be suitable for extensive parametric studies. 

It is now obvious that removal of the stability requirement given by equation (1) is of utmost 
importance for the numerical modelling of low-Reynolds-number flows. In order to do this, the 
viscous stresses must be modelled in an implicit way. To solve the implicit coupled Navier-Stokes 
equations requires a rather lengthy numerical procedure, but this is mitigated by the larger 
allowable a t .  It is this type of implicit treatment of the Navier-Stokes equations that makes 
practical the solution of low-Reynolds-number flows. Further, the CIAT algorithm provides an 
accurate and efficient solution to such problems. 

EQUATIONS O F  MOTION 

The differential equations to be solved are written in terms of Cartesian co-ordinates ( x ,  y). For 
cylindrical co-ordinates (r, z )  the x-co-ordinate is interpreted as the radial direction and the y-co- 
ordinate is transformed to the axial co-ordinate. In the following 5 = 0 corresponds to Cartesian 
geometry while 5 = 1 corresponds to cylindrical geometry. 

The mass continuity equation for a constant density fluid is 

u, + u, + 5 u / x  = 0, (3) 
where the velocity components (u, u)  are in the co-ordinate directions (x, y) or (r, z). The equations 
of motion for the fluid velocity components in the two co-ordinate directions (u, u) are the 
Navier-Stokes equations 

In these equations (g,, 9,) are body accelerations, p is the fluid density and (L , f , )  are the viscous 
accelerations. For a variable dynamic viscosity p the viscous accelerations are 

(6) 

(7) 

.L = - C(z,,), + (LJ, + 5(L, - ~ J X I ,  

f ,  = - “z,,), + ( ~ y y ) y  + 5 ~,,/XI, 

zxx = - 2PUX7 z,,= -2pu, ,  zxy= -p(u,+u,) ,  ze= -2pulx. 
where 

In this report we are only interested in the solution of highly viscous, Newtonian fluid flows, i.e. 

p Cut + (uu), + (uu), + 5 uulxl = - p ,  + p g ,  + VISX, (8) 

pCu,+(uu),+(uu),+5uu/x1 = -pP,+pgy+VISY, (9) 

constant viscosity. Thus equation (4) and (5 )  can be written as 
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where 

Fluid configurations for free surface calculations are defined in terms of a volume-of-fluid 
(VOF) function F(x, y, t). This function is defined in such a way that its value is unity at any point 
occupied by the fluid and zero elsewhere. When averaged over a computational cell, the value of F 
is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F 
corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. 
Cells with F-values between zero and one contain a free surface. 

The time dependence of F is governed by the kinematic equation 

F, + ( F U ) ~  + (FU), + 5 F ~ / x  = 0. 

This equation states that F moves with the fluid. 

FINITE DIFFERENCE FORMULATION 

A first step toward the solution of the governing equations is to choose a finite difference grid 
system. A staggered grid system of variable rectangular cells of width ax, and height 6 y j  is used 
(Figure 1). 

As shown for a typical cell in Figure 2, u-velocities are stored at the centres of cell faces normal 
to the x-direction and u-velocities are stored at the centres of cell faces normal to the y-direction. 
Pressures p and fluid volumes F are stored at the cell centres. 

A desired finite difference approximation to the governing equations is one which is first-order- 
accurate in time and second-order-accurate in space. A generic form for the finite difference 
approximation to equation (3) is 

(u;,;' -u:?;,j)/dxi+(u;,;l -u;,f',)/6yjf t(u;,f' +u;_+;,j)/(2xIi)=o, (1 1) 

where XI, is the x-location of the centre of the ith cell and the superscript n+ 1 indicates the 
advanced time level c + S t .  

Figure 1. Schematic of finite difference cells 
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* dxi L 

Figure 2. Location of variables in a typical cell 

Similarly a generic form for the finite difference approximation of equations (8) and (9) is 

u:,:' =~:,~+6t[(p;t'  > J  -pl=,',j)/(p6x)i-FUX7,j-FFUY7,j+VISX7,f1 +g,], 

u:,: = ~ : , j  + 6t [ ( P I T  ' -p7,f: 1)/(~6y)j- FVX7.j- FVY:,j+ VISYY,; + g,], 

( P  6x)i = P(6xi + 6xi + 1 )/% 

(~aY)j= P(6Yj + 6Yj+ 1 

(1 2)  

(13) 

where 

Here the superscript n indicates that the terms are evaluated at time t, while the superscript n + 1 
means that the terms are evaluated at time t + 6t. The advective and viscous acceleration terms 
have an obvious meaning, e.g. FUX means the advective flux of u in the x-direction and VISX is 
the x-component of viscous acceleration. 

The difference approximation used for advective fluxes is a weighted upstream differ- 
encing approximation. The general form of this approximation for one of the fluxes such as 
FUX = udu/ax is2 

FUX = ( U ~ , ~ / ~ X , )  [6xi+ ,DUDXL+Gx,DUDXR +asgn(u)(6xi+ DUDXL-6xiDUDXR)], 
(14) 

where 

DUDXR =RUXR(uj+ l , j - ~ j , j ) ,  DUDXL=RUXC(uj,j-uj- l , j ) ,  

RUXR = 1/6xi+ RUXC = 1/6xi, 

6x, = 6xi + + 6xi + CI sgn(u) (6xi + - axi) 

and sgn(u) means the sign of u ~ , ~ .  When a=O, this approximation reduces to a second-order- 
accurate, central differencing scheme. When a = 1, first-order upstream differencing is recovered. 
The basic idea behind equation (14) is to weight the upstream quantity being fluxed more than the 
downstream value. The weighting factors are 1 +a and 1 -a for the upstream and downstream 
directions respectively. The derivatives are also weighted by cell size in such a way that the correct 
order of approximation is maintained in a variable mesh. 
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The finite difference approximations employed for viscous acceleration terms are the standard 
central differences which are second-order-accurate. Thus 

VISX,, = v(DUDXSQ + DUDYSQ + DVDXDY + YDUXDX), (1 5 )  
VISY,, = v[DVDXSQ + DVDYSQ + DUDXDY + <(DUDYRX + DVDXRX)], (16) 

where 

RVXT = 2/(6xi + Sxi+ 1), RVXB = RVXT, RDYT = 1/(6yj + 6yj+ I ) ,  

RVXR = RVXT, RVXL = 2/(bxi - + h i ) ,  

RVYC= 1/6yj, RUYR= RUYT, RUYL=RUYT. 
RVYT = 1/6yj+ 1, 

Here Xi is the location of the right-hand boundary of the ith cell in the x-direction. It might seem 
peculiar to write the velocity derivatives such as au/ax and au/ay in terms of multipliers like 
RUXR and RVYT, but this allows for easy application of zero-gradient, velocity boundary 
conditions (see next section on boundary conditions) at the free surface by simply setting RUXR, 
RUXC, etc. to zero. 

As noted earlier, the kinematic equation (10) governs the evolution of the VOF function F 
through time and space. When this equation is integrated over a computational cell, the changes 
in F for a cell reduce to fluxes of F across the cell faces. However, standard finite difference 
approximations lead to a smearing of the F-function and interfaces lose their definition. Therefore 
special care must be taken in computing the fluxes of F to preserve the sharp definition of 
interfaces. Fortunately the fact that F is a step function with the values of zero or one permits the 
use of a flux approximation that preserves its discontinuous nature. The method employed is to 
use a type of donor-acceptor flux approximation. The essential idea is to use information about F 
downstream as well as upstream of a flux boundary to establish a crude interface shape and then 
to use this shape in computing the flux. The reader is referred to Reference 2 for greater discussion 
of this technique. 

Having described the governing partial differential equations and their respective finite- 
difference approximations, attention is now given to the boundary conditions. Boundary con- 
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dition specifications must be supplied in order to have a complete mathematical description for 
the fluid flow. 

BOUNDARY CONDITIONS 

Basically there are two kinds of boundary conditions. The first type is at the calculational domain 
boundaries, while the second type is at the free surface. At the mesh boundaries a variety of 
conditions may be imposed by using a layer of fictitious cells surrounding the mesh. Consider, for 
example, the left boundary (see Figure 3). If this is a rigid free-slip wall, the normal velocity there 
must be zero and the tangential velocity should have no normal gradient. Thus 

~ 1 ,  j = O ,  u l , j = v 2 ,  j ,  PI, j = ~ 2 , j ,  FI, j =  Fz, j 
for all j. If the boundary is a no-slip rigid wall, then the tangential velocity component at the wall 
should be zero; that is, 

for all j. 
For continuative or outflow boundaries an optimum prescription is one that permits the fluid 

to flow out of the mesh with a minimum of upstream influence. The continuative boundary 
conditions used at the left wall are the same as the ones used in Reference 2, which are 

for all j .  
A constant pressure boundary condition at the left wall is set by keeping the pressure in column 

i = 2 constant and otherwise treating the boundary as continuative. 
A fixed velocity boundary condition at the left wall is set by keeping the velocity u l , j  at a 

specified inflow value and otherwise treating the boundary as continuative. 
All these boundary conditions are imposed on the velocities computed from the momentum 

equations at all times. Boundary conditions similar to the ones above are used at the right, top 
and bottom boundaries of the calculational domain. Of course the normal and tangential 
velocities at the top and bottom boundaries are u and u respectively. 

u l , j = O ’  ~ 1 ,  j =  -02, j ,  P I , ~ = P Z , ~ ,  F I , j = F , ,  j 

U1, j = u ~ ,  j 01, j =  02, j P I ,  j = P 2 ,  j ,  F1, j = F , ,  j 

Mesh Boundary 

Figure 3. Field variables near a wall 
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The correct free surface boundary conditions in cells containing a free surface (a cell containing 
fluid, e.g., F #O, but with one or more empty neighbours) are the vanishing of the tangential stress 
and the continuity of a sum of pressure and a viscous stress term." This means that the sum of in- 
cell pressure and a viscous stress term should be equal to an applied surface pressure. However, 
use of this iteration-dependent boundary condition requires some consideration,2 such as a 
special relaxation parameter. Straight application of this normal stress boundary condition could 
cause considerable complications, as in Reference 3. 

In order to avoid these problems and simplify the procedure for setting free surface pressure 
boundary conditions, the viscous stress terms at a free surface are separately set to zero. As a 
result an iteration-independent technique4 can be used. In this technique the pressure is assigned 
a specified value, say p s ,  at the surface. This is done by choosing the pressure p i , j  at the centre of a 
surface cell assuming a hydrostatic distribution exists within the surface cell. The hydrostatic 
distribution depends on the net acceleration in the direction normal to the surface (this direction 
is defined by a flagging scheme). This pressure is not changed during the iterative solution but is 
treated as a constant boundary value. Finally the surface pressure ps  is set equal to the sum of the 
pressures of the neighbouring empty regions. 

The tangential stress conditions are satisfied by setting all velocity derivatives that involve 
velocity components outside the surface to zero. However, in order to correctly account for fluid 
advection, the velocities must be set on every cell boundary between a surface cell and an empty 
cell. If the surface cell has only one neighbouring empty cell (for a cell indexed as ( i , j ) ,  the 
neighbouring cells are the ones indexed by (i+ l,j), ( i -  l , j ) ,  ( i , j+ 1) and (i,j- l)), the boundary 
velocity is set to ensure that the continuity equation is satisfied within the surface cell. When there 
are two or more empty neighbours, the velocities on faces open to the empty cells are set to have a 
zero normal velocity derivative (i.e. Ju/& and Ju/Jy). The velocity on the side opposite the 
neighbouring cell is then reset to ensure that the continuity equation is satisfied. For a wider 
discussion of boundary conditions at a free surface the reader is advised to consult Reference 2. 

THE CIAT ALGORITHM 

The calculational procedure will first be developed for flows without a free surface. This will allow 
for a simple, yet concise presentation of the theoretical concept behind CIAT. The method will 
then be generalised to allow for calculation of the flows with free surfaces. 

Equations ( l l H 1 3 )  form the basis of the proposed method of solution. To solve these 
equations, one assumes that the field variables are available at the beginning of a time cycle, either 
as a result of a previous time cycle calculation or specified initial conditions. The objective of the 
solution for each time cycle is to obtain a set of pressures and velocities that satisfy these 
equations. 

Owing to the implicit form of the viscous and pressure terms in equations (12) and (13), we have 
three sets of coupled simultaneous equations to solve for each time step. Most investigators 
employ an iterative solution algorithm known as SIMPLE.' Solution by this method is 
determined by first calculating an intermediate velocity field based on an estimated pressure field 
and then obtaining appropriate correction so as to satisfy the continuity equation. This method 
has been used by many workers in a variety of complex single- as well as multi-phase fluid flow 
and heat transfer computations. 

A major deficiency of the SIMPLE algorithm, as noted by Patankar6 and experienced by the 
present author in application to free surface problems, is that the method is prone to divergence 
unless some relaxation is used. Optimum relaxation factor values are usually problem-dependent 
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and are best obtained by numerical experimentation for the problem at hand. However, this 
experimentation can be quite frustrating and costly and there is no guarantee of success. 

As noted earlier, the method of Pracht3 is somewhat difficult to implement for the general 
treatment of boundary conditions including ones at the free surface. Thus it was decided to 
develop an inherently stable methodology which also lends itself to easy application of boundary 
conditions. This method, called CIAT, focuses attention on locally satisfying the conservation 
equations for a given finite difference cell such as the one depicted in Figure 2. 

It is apparent that for each such cell there are five variables that have to be determined. These 
variables are pi ,  j ,  ui, j., vi, j, ui- 1, and ui, j- 1. However, they must be obtained in such a way that 
the cell continuity equation (equation (1 1)) as well as the appropriate momentum equations 
(equation (12) for ui, j ,  equation ( 1  3) for ui, and similar ones for ui-  1, and ui, j- ) are satisfied. 

Suppose that at a given iteration level in the new time cycle we have a set of intermediate 
velocities and pressures denoted by u*, u* and p* which will in general not satisfy the 
conservation equations. These starred quantities will locally produce a net mass and momentum 
source for the cell ( i ,  j ) .  These sources are defined by 

SUi , j=(~i , j )n-~;  3J .)/6t+(p:j-p:+ l,j)/(p6x)i-FUX~,j-FUY~,j+VISX:j+g,, (17) 

SVi, = (I(', j - U: j)/6t + (p?  j- p:j+ 1)/(p6y)j-FVX:, j-FVY7, j + VISYtj + gy ,  (19) 

(20) 

(21) 

SV,, j -  = (u:, j -  - u t j -  1)/6t + (p:j- 1 - p:j)/(pdy)j- 1 - FVX7,j- 1 - FVY:,j- 1 + VISYzj- 1 + gy, 

SM,, j = ( l / S ~ i  + 5/2XIi)u5 - (1/6xi- t/2XIi)@- l , j +  (uzj-  ~ z j -  1)/6yj. 

In the above equations SU, SV and SM are the momentum source terms for u-velocity and for u- 
velocity and the mass source term respectively. Also the superscript II + 1 on starred quantities has 
been left out for conciseness. 

Now the goal is to correct the cell pressure and cell edge velocities so as to annihilate these 
source terms. Let us suppose that the corrected pressure and velocities are 

p .  1 ,J  . = p * . + p ; , j ,  1.3 (22) 

u. 1 . J  . = u * . + u ! .  1 , J  1.J' (23) 

0 .  1 , J  .=u* .+ , ! .  1 ,J  1.J) (24) 

(25) 

(26) 

u i -  1, j =  u;- 1, j +  u:- 1 ,  j ,  

ui, j -  1 = u t j -  1 + u:. j -  1,  

where the primed terms indicate corrections. 
It should be noted that the adjacent cell pressures and velocities have their latest available 

values and are left unchanged at this stage. Substitution of equations (22H26) into equation 
(1 7H21) gives, after rearrangement, the following system of linear equations for pressure and 
velocities corrections: 
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where 

a l l  = l/6t+v(2RDXR[RUXR(2+t6x,/Xi) 
+RUXC(2-(6xi+1/Xi)] +(RUYT+RUYB)/Gyj}, 

a12 = - v [2 RDXR RUXC(2 - (6xi+ JXi- 1)], 

a 1 3  = v RVXT/Gyj, a 1 4  = - v RVXBIGyj, a15 = - l/(p6x)i, 
1 = - v [ RDXL RUXC(2 + t 6xi - JXi)], 

~ 2 2 =  1/6t +v(2RDXL[RUXC(2+ CSxi- JXi- 1) 

+ R U X L ( ~ - ~ ~ X J X ~ - ~ ) ]  +(RUYT +RUYB)/Gyj}, 

a 2 3 =  -vRVXT/Gyj, a24=vRVXB/Gyj, ~ 2 5 = l / ( p 6 ~ ) i - 1 ,  

1 = v RUYR(l/Gxi + t /2 XIi), a 3 2  = - v RUYL(l/Gxi-t/2 XIi), 

~ 3 3 =  l/dt+v[4RDYT(RVYT+ RVYC)+ RVXR(l/Gxi+t/2XIi) + RVXL(l/Gxi-t/2XIi)], 

~ 3 4 =  - 4 ~  RDYT RVYC, 

U ~ ~ = V R U Y B ( ~ / G X ~ - < / ~ X I ~ ) ,  a 4 3  = -4vRDYB RVYC, 

~ 4 4 ~  1/6t +v[~RDYB(RVYC+RVYB)+RVXR(~/~~~+~/~XI~) + RVXL(l/Gxi-t/2XIi)], 

a45= l/(pdY)j-l? 
U 5 3 = 1 / 6 y j ,  a 5 4 =  -1/6yj, a,,=O 

~ 3 5 =  - l/(pGy)j, a 4 1  = -V RUYB(l/Gxi+ t/2XIi), 

a5 1 = 1/6xi + </2 XIi, a5 2 = - 1/6xi + (/2 XI,, 

and 

RDXL= 1 / ( 6 ~ , - ~  +ax,), 

RUXL= 1/6xi- 1, 

RDYB= 1 / ( 6 ~ ~ - ~  +6yj), 
RVYB = 1/6yj- 1. 

Examination of the determinant of the coefficient matrix in equation (27) reveals that this 
determinant, irrespective of the values of 6t and other variables, is always non-zero. Therefore 
equation (27) always will possess a unique solution. In general, the solution has to be obtained via 
an efficient matrix solver. However, in the case of Cartesian geometry with uniform grid spacing 
the coefficient matrix in equation (27) will simplify and direct solution is possible. 

At each time cycle the sequence of important operations that have to be performed are as 
follows: 

1. The computational mesh is swept cell by cell starting with i = j = 2, the first non-boundary 
cell in the mesh. Sweeping is first carried out on i and then on j .  Each complete sweep 
constitutes a single iteration. However, prior to the start of the iteration, all the explicit 
terms that do not change during the iteration process are computed. 

2. In each cell (i, j) find SU, SV, SM and the coefficient matrix which is needed in the solution of 
equation (27) using the most current values available. 

3. Solve equation (27) for pressure and velocities corrections. 
4. Find new estimates for cell pressure and the velocities located on the sides of the cell 

according to equations (22)-(26) where the starred quantities are the most current values 
available. 

5. After visiting all cells, impose the necessary boundary conditions. 
6. Return to Step 1 and repeat the whole procedure until a converged solution is obtained. 
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Convergence of a time cycle is achieved when the SU, SV and SM absolute values of all cells fall 
below some small number, say E.  Typically E is of the order of although it can vary with the 
specific problem being solved. Finally it should be noted that to start the iteration scheme for a 
new time cycle one uses the pressure and velocity field obtained from the previous time cycle as 
the values for p * ,  u* and u*. 

The method of solution for flows with free surfaces is basically the same as that for confined 
flows. The only difference is that the CIAT algorithm is only performed for cells that contain fluid 
and have no empty neighbours. After convergence of the iteration process, the kinematic equation 
for F(x, y, t )  is solved by donor-acceptor flux approximation methods. At this point, cells are 
reflagged as being full, empty or containing a free surface. The final step is to calculate the surface 
pressure as described in the boundary condition section. 

Finally it should be noted that at locations where boundary conditions are specified the sources 
of momentum would be set to zero. An example would be a solid boundary at the left wall of all 
cells in column i = 2. Since u l ,  = 0 at this location, SU,, is also set to zero. 

SAMPLE CALCULATIONS 

Several calculational examples in Cartesian co-ordinates are performed to illustrate the capabili- 
ties of the CIAT technique. All calculations were performed on a MicroVax I1 computer using 
single-precision arithmetic. 

/ 

\ 

\ 

\ 

\ 

\ 

.\ 

. 

Time = 1.000E + 00 Cycle = 1 

Figure 4. Velocity vector for driven cavity at Re=OQOl 
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In the first example fluid initially at rest in a square cavity of length L =  1 is set into circulatory 
motion by the top boundary moving in its own plane. This problem was chosen to illustrate the 
advantage of implicit viscous stress modelling and the accuracy of solution using CIAT for 
confined flows. In addition cavity flow has been investigated experimentally and numerically so 
that a useful comparison can be made. 

Calculations for the square cavity problem were performed for varying values of Reynolds 
number so that the unique features of the method could be tested. To illustrate the stability of 
CIAT under harsh circumstances, calculations were run with Re = 0.001 using a time step of 6t = 1 
and uniform mesh spacing of 6x = 6 y  = 0.1. The time step chosen gave a 400000-fold violation of 
the explicit stability condition given by equation (1). Excluding any plotting time, this calculation 
required about 1.45 CPU minutes. 

Figure 4 shows the steady-state velocity vector configuration for Re = 0.001. Horizontal 
velocity profiles along a vertical line through the vortex centre are shown in Figure 5, which 
compares the CIAT solution to the unsteady equations for Re = 0.001 with the result from the 
steady equations for Re = 0 by B~rggra f .~  

The second example is the slow flow of a fluid having free surfaces. The example illustrated in 
Figures 6 and 7 represents the highly viscous slumping motion that occurs if a rectangular block 

1 .o 
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b 
.- 
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-0.2 

-0.4 
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I I 
0.2 0.4 0.6 0.8 1 I 

Vertical Distance 

Figure 5. Comparison of horizontal velocity profiles along a vertical line through the centre of a vortex between CIAT at 
Re =0@01 and Burggrar at Re = 0 



Figure 6 .  

Figure 7. Velocity vectors and fluid shapes for slow motion of a block of tar, at times 7.5, 10, 12.5 s 
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s 

I 

. . . . . . . 

Cycle = 0 Time = 0.000E+00 

Figure 8. Initial fluid configuration for flow of resin into a partially filled rectangular box 

of tar is placed on a non-slip surface and left undisturbed. The tar has a viscosity of 300 kpoise 
and a density of 2000 kgm-3. There were 200 cells with uniform mesh spacing of 6x =0.2 and 
6y=O.183. The calculation was started with a time step of 6 t=01  s and allowed to vary 
depending on local cell velocities. This insured compliance with the time step limit imposed by 
explicit differencing of convective fluxes. During the course of this calculation 6t varied between 
0.05 and 0.25. The results compare well with those of P r a ~ h t . ~  These calculations required about 
86.4 CPU minutes to complete. 

The final example is a simulation of resin flow into a rectangular box.* The box cross-sectional 
area is 4 x 2 inches and is initially filled with clear resin having a viscosity of 1-0 kpoise (see 
Figure 8). Dyed resin of the same viscosity is poured at a rate of 0.065 lb m s- through a 0.38 inch 
slit down the left wall of the box. The Reynolds number based on the flow rate and the width of 
the slit is about 8.93 x 

As shown in Figure 8, 3200 massless particles are used to mark the initial fluid distribution. 
Subsequent motion of these particles at each time cycle reflects the evolution of the initial fluid 
configuration. Figure 9 shows the initial fluid configuration as well as the location of free surfaces 
after 20 s of continuous pouring of dyed resin into the box. 
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Time = 2.008E+01 Cycle = 143 

Figure 9. Fluid configuration at time 20 s for flow of resin into a partially filled rectangular box 

Figure 10 illustrates the experimental fluid configuration at a time of 20s. Comparison of 
Figures 9 and 10 shows excellent qualitative agreement between the CIAT prediction and 
experiment. For these runs a non-uniform grid was used. Smaller cells were packed near the left 
boundary, while larger cells were placed near the right-hand boundary. A total of 1300 cells was 
used and the calculation required about 522 CPU minutes to complete. Included in this time was 
the CPU time necessary to move and perform the book-keeping of the massless particles. A thin 
empty layer is seen in Figure 9, near the right wall, which has to be interpreted carefully. This is 
primarily a result of coarse grid resolution in this region. The procedure that is used to interpolate 
velocity components necessary to move the particles gives zero tangential components near a wall 
which is incorrect in regions of coarse resolution. However, this problem does not affect the 
prediction of the free surface, which is done independently using the VOF method. 

In this paper we have explained a new technique which is very suitable for calculation of flow at 
low Reynolds numbers as well as at intermediate Reynolds numbers. The method has been 
demonstrated to be accurate and stable. It is easily adaptable to solution in three-dimensional 
space. Currently an effort is underway to incorporate CIAT into a multigrid solution algorithm 
where it will be used as an interior scheme for the solution of large-grid-size portions of 
calculation. 
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Figure 10. Experimental fluid configuration at time 20 s for flow of resin into a partially filled rectangular box 
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